Text Size AAA Bookmark and Share

Search

Listed below are all documents and RMI.org site pages related to this topic.
7 Items

Energy flow through a typical internal combustion engine drivetrain

http://www.rmi.org/RFGraph-Energy_flow_through_a_typical_internal_combustion_engine_drivetrain
This chart shows why less than 0.5% of the energy in a typical modern auto’s fuel actually moves the driver, and only 5–6% moves the auto. An auto's weight is responsible for more than two-thirds of the energy needed to move it. All told, 86% of the fuel energy never reaches the wheels.

 

Tractive load formulas

http://www.rmi.org/RFGraph-tractive_load_formulas
Powertrain efficiency from tank to wheels can't exceed 1.0, and is around 0.17 in a typical modern car or 0.35 in a good "full hybrid," but the energy needed to move the car can be reduced severalfold by making it lighter and more slippery.

 

Horsepower to overcome aerodynamic drag

http://www.rmi.org/RFGraph-Horsepower_overcome_aerodynamic_drag
Each 10% decrease in an auto’s aerodynamic drag can raise its fuel economy by very roughly 3%.

 

Drag coefficient and retail price, new U.S. car sales model year 2010

http://www.rmi.org/RFGraph-Drag_coefficient_and_retail_price
As with lightweight autos, more aerodynamic autos needn’t cost more. A survey of currently available autos shows that lower drag vehicles, as a whole, cost no more than less aerodynamic ones.

 

Basic characteristics of Revolutionary Plus autos

http://www.rmi.org/RFGraph-Basic_characteristics_of_Revolutionary_plus_autos
Our Revolutionary auto class is based on RMI’s extensive work on the Hypercar. We use a cost model for superefficient battery-electric and fuel cell autos for both cars and light trucks. These vehicles, described in this table, are designed to compete with EIA’s average automobile in price and all driver attributes.

 

Heavy truck efficiency supply curve

http://www.rmi.org/RFGraph-heavy_truck_efficiency
Better design can save up to 45% of U.S. heavy truck fuel, or 1.7 Mbbl/d in 2050, at a weighted-average cost equivalent to $1.00-per-gallon diesel fuel.

 

Efficiency potential for heavy truck aerodynamic improvements

http://www.rmi.org/RFGraph-Efficiency_potential_for_heavy_truck_aerodynamic_improvements
Integrating four major aerodynamic features can save about 10% of heavy trucks’ fuel: a nearly sealed tractor-trailer gap, full skirting of the tractor and trailer, a rear drag reducing device, and optimized cab shape with minimal aerodynamic discontinuities.