Text Size AAA Bookmark and Share


Listed below are all documents and RMI.org site pages related to this topic.
Energy and Resources - Renewables 48 Items

First Previous 1 2 3 4 5 Next Last 

Micropower Database 2014 (July)

Guide, 2014

2014 (July) Edition: The purpose of the micropower database is to present a clear, rigorous, and independent assessment of the global capacity and electrical output of micropower (all renewables, except large hydro, and cogeneration), showing its development over time and documenting all data and assumptions. With minor exceptions, this information is based on bottom-up, transaction-by-transaction equipment counts reported by the relevant suppliers and operators, cross-checked against assessments by reputable governmental and intergovernmental technical agencies. For most technologies, historic data runs from 1990 through 2013. Available information includes installed capacity (GW) and electricity generation (TWh/y) per generating technology. The Micropower Database Methodology is also included in this ZIP-file. For previous versions, please see the 2008 Micropower Database (RMI ID E05-04) and the 2010 (May) Edition (RMI ID 2010-06).


An initial critique of Dr. Charles R. Frank, Jr.’s working paper “The Net Benefits of Low and No-Carbon Electricity Technologies,” summarized in The Economist as “Free exchange: Sun, wind and drain”

Journal or Magazine Article, Letter, 2014

A May 2014 working paper by nonresident Brookings Institute fellow Dr. Charles Frank, highlighted in The Economist, claims that wind and solar power are the least, while nuclear power and combined-cycle gas generation are the most, cost-effective ways to displace coal-fired power. (He didn't assess efficiency.) This detailed twelve-page critique by RMI's Amory Lovins shows that those priorities are artifacts of Dr. Frank's obsolete data. Replacing nine of his wrong numbers with up-to-date empirical ones, even without correcting his methodology, reverses his priorities to the ones most energy experts would expect: after efficiency, the best buys are hydropower (on his purely economic assumptions), then windpower, photovoltaics, gas combined-cycle (assuming 1.5% methane leakage and medium price volatility—assuming zero price volatility would put gas ahead of solar), and last of all nuclear power. Dr. Frank argued that the way most investors pick power-sector investments—lowest long-run economic cost—is wrong, or at least incomplete, because different technologies generate power at different times, creating different amounts of value. He's right that value as well as cost should be considered. But interestingly, using correct data, the cost- and value-based calculations yield the same priorities, so adjusting for time of generation doesn't matter. Those priorities would probably be further reinforced (other than big and some small hydropower) if other kinds of hidden costs, risks, and benefits were also considered. The more obvious of Dr. Frank's data problems were assuming wind and solar power half as productive and twice as costly as they actually are, gas power twice as productive as it actually is but with no methane leakage or price volatility (let alone extractive side-effects of fracking), nuclear power at about half its actual cost and construction time and one-fifth its actual operating cost, a supposed need for new generating capacity and for bulk electricity storage, and no efficiency opportunities worth mentioning. His method of analyzing grid reliability was also unique and strange. These assumptions drove his unwarranted but, thanks to the Economist, widely publicized conclusions. Dr. Frank argued that the way most investors pick power-sector investments—lowest long-run economic cost—is wrong, or at least incomplete, because different technologies generate power at different times, creating different amounts of value. He's right that value as well as cost should be considered. But interestingly, using correct data, the cost- and value-based calculations yield the same priorities, so adjusting for time of generation doesn't matter. Those priorities would probably be further reinforced (other than big and some small hydropower) if other kinds of hidden costs, risks, and benefits were also considered.


Amory Lovins' articles on Germany's energy transition

Journal or Magazine Article, 2014

Please find below a collection of Amory Lovins' articles on Germany's energy transition, organized from new to old.

How Opposite Energy Policies Turned The Fukushima Disaster Into A Loss For Japan And A Win For Germany (Forbes, June 2014)

Separating Fact from Fiction in Accounts of Germany's Renewables Revolution (RMI blog, August 2013)

Debunking the Renewables' Disinformation Campaign (RMI blog, July 2013)

Germany's Renewables Revolution (RMI blog, April 2013)


Next-Generation Energy Management: Solutions for the next level of performance in corpoarte real estate

Report or White Paper, 2014

Global energy investment in buildings is on the rise, and many companies are taking part to earn a profit, manage risk, and meet growing stakeholder demands. The world’s largest companies have committed to aggressive goals such as becoming 100 percent powered by renewable energy, and are already profiting on their progress.

Significant business opportunities remain for the rest of the world’s major companies to set and achieve higher energy management goals. The key for these companies is to become more active energy consumers by identifying opportunities for energy efficiency, power load flexibility, and renewable power generation investment. Companies can use the solutions proposed in this paper to get organized, capitalize upon specific opportunities, and optimize their overall approach to this business opportunity. The solutions are broad enough to be meaningful for most companies, yet some solutions will undoubtedly be more important for specific business sectors and situations.

Corporate real estate professionals who implement these solutions with the energy team have the opportunity to build significant company value. To assist in the implementation of these solutions, CoreNet Global and Rocky Mountain Institute will be facilitating ongoing interactions and events with members, such as roundtable discussions. Please inquire with the contacts of this paper for more information.


Reducing Solar PV Soft Cost: Focus on Installation Labor

Report or White Paper, 2013

Distributed solar energy is a key enabler of the affordable, resilient, secure, and low-carbon electricity future Rocky Mountain Institute (RMI) advocates in Reinventing Fire.1 However, in order for distributed solar to play its role, a number of changes must transpire. The most pressing of these changes is for solar costs to come down to U.S. Department of Energy SunShot levels that enable deployment of cost-effective solar systems across the U.S. Between 2008 and 2012, the price of sub-10-kilowatt rooftop systems decreased 37%. However, over 80% of the cost decline is attributable to decreasing solar PV module costs.2 Of the average $4.93/W3 cost of a residential rooftop solar system, over 60% of the total is now attributable to “soft costs,” including those associated with installation labor; permitting, inspection, and interconnection (PII); customer acquisition; financing costs; and installer / integrator margin.4 With module and inverter costs predicted to stabilize at relatively low levels between now and 2020, these soft costs must come down in order for solar energy to be cost competitive across the U.S.


Building the Electricity System of the Future: Fort Collins and FortZED

Report or White Paper, 2013

Fort Collins Utilities has been working to meet its clean energy goals including a flagship effort, called FortZED, to build a net zero energy district in downtown Fort Collins. Fort Collins Utilities and its partners worked with the Electricity Innovation Lab (e-Lab) to design and carry-out a two-day charrette on November 7th and 8th, 2012. The charrette team identified innovative solutions to some of Fort Collins’ most difficult challenges around planning, investment, and execution of efficiency and renewable energy.


The economics of a US civilian nuclear phase-out

Journal or Magazine Article, 2013

In the United States, which trades three-fifths of its electricity in competitive markets, the prohibitive capital cost of new nuclear power plants ensures that only a handful will be built. Nonetheless, with 40-year licenses being extended to 60 years, the 104 existing reactors’ relatively low generating costs are widely expected to justify decades of continued operation. But the generating costs of aging reactors have been rising, while competitors, including modern renewables, show rapidly falling total costs—and those opposed cost curves have begun to intersect. An expanding fraction of well-running nuclear plants is now challenged to compete with moderating wholesale power prices, while plants needing major repairs or located in regions rich in wind power increasingly face difficult choices of whether to run or close. Thus, even without events that might accelerate nuclear phase-out, as the Fukushima disaster did in Germany, shifting competitive conditions have begun to drive a gradual US nuclear phase-out. Its economics are illuminated by a detailed energy scenario that needs no nuclear energy, coal, or oil and one-third less natural gas to run a 158 percent bigger US economy in 2050—but cuts carbon emissions by 82 to 86 percent and costs $5 trillion less. That scenario’s 80-percent-renewable, 50-percent-distributed, equally reliable, and more resilient electricity system would cost essentially the same as a business-as-usual version that sustains nuclear and coal power, but it would better manage all the system’s risks. Similarly comprehensive modeling could also analyze faster nuclear phase-out if desired.


Global Energy Affairs

Report or White Paper, 2013

The current issue of Global Energy Affairs features two unique perspectives on nuclear energy. Amory Lovins highlights how Germany, unlike Japan, utilized its decision to abandon nuclear energy to create a revolution in efficiency and renewable energy. Malcolm Grimston contends that despite a highly favorable environment for nuclear development in the UK, the market response remains weak. Sheril Kirshenbaum highlights how the public opinion in the U.S. contributes to defining global energy priorities. Audi’s e-gas car and tracking progress of Masdas City are the projects of this month. News highlights, innovations, and briefs cover recent major developments in the field of energy and environment. Roel Sweirenga’s reflections on the on Sustainable Mobility for the Decade 2014- 2024 and the profile of Quale Hodek, a young leader in renewable energy, completes this issue


Sustainable Zero Net Energy: Identifying the Essentials for Solutions

Conference Proceedings, 2012

This paper explores the challenges and opportunities available for the electricity and buildings industries as the adoption of distributed generation, energy efficiency, and zero net energy designs grow.


Net Energy Metering, Zero Net Energy, and the Distributed Energy Resource Future

Report or White Paper, 2012

On behalf of PG&E, Rocky Mountain Institute organized and facilitated a roundtable of experts to evaluate the potential implications for the utility and its customers of a future business environment characterized by high levels of customer energy efficiency, growing numbers of Zero Net Energy buildings, and increased adoption of distributed generation (largely solar PV) by utility customers. The political and policy environment surrounding distributed resources is highly charged, with strongly held beliefs and assumptions about distributed generation benefits and impediments to customer adoption. At the same time, there are myriad complexities in analyzing the costs and benefits to the utility system of installing these technologies. Costs and benefits will shift over time as markets evolve, penetration rates increase, and new technologies are deployed. The roundtable worked to build a shared understanding of the problems and challenges facing stakeholders in the electric system and to identify the essential characteristics of workable long-term solutions.


First Previous 1 2 3 4 5 Next Last 
Show Subscribe