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Abstract 

The “next generation” electric utility must incorporate 
variable renewable resources, including wind and solar, in 
much larger quantities than conventionally thought possible. 
While resource variability presents a challenge, it should be 
possible to reduce and manage that variability by 
geographically distributing renewables, combining them 
with different renewables, and having more dynamic control 
of electric loads. 
 
This study shows that interconnecting individual solar 
generation sites into geographically diverse arrays can 
reduce power output variability, and that including solar 
generation sites in arrays of geographically diverse wind 
sites can further reduce the total variability beyond what is 
possible for either resource type alone. Specifically, 
optimized portfolios offer an average decrease in variability 
of 55% below the average of all individual sites. Finally, it 
was observed that, in the modeled system, only a small 
subset of the potential sites in an interconnected array need 
to be included to achieve these variability reductions. 

1 INTRODUCTION 

The ever-growing energy demands of the 21st century are 
dependent upon a power infrastructure designed for the 
early 20th century. Advances in digital communications and 
renewable energy technologies could facilitate a transition 
to a “next generation utility” that fully integrates both 
supply- and demand-side resources in a way that can enable 
significantly larger penetrations of variable renewable 
energy technologies than conventionally thought possible. 
 
This paper begins with a brief overview of the “next 
generation utility” concept, then turns to the ability of the 

next generation utility to incorporate solar and wind power 
on a large scale, driven by geographical dispersion of both 
solar and wind resources at utility and larger scales, cross-
firming of solar and wind resources, and increased grid 
flexibility to absorb and mitigate variability. 

2 THE NEXT GENERATION UTILITY 

A new electric utility paradigm is needed to meet increasing 
demands for power quality and reliability and to 
significantly reduce global greenhouse gas emissions 
generated by electricity production. A new generation of 
power technology is developing, however, and can enable  
the “next generation utility”, which will involve (see Fig. 1): 
 
• Fully capturing the potential of energy efficiency and 

demand response; 
• De-carbonizing electric supply through greatly 

increased penetration of renewable and distributed 
supply technologies; and 

• Electrifying or substituting clean, renewable fuels for 
loads that would otherwise depend on fossil fuel, 
including vehicles. 

 

 
Fig. 1: The next generation utility will turn generation 
infrastructure on its head, with a mix dominated by 
efficiency and renewables with minimal coal and nuclear 
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A key tenet of the next generation utility concept is that it 
should be possible to provide the energy services required 
by our modern society using significantly less “baseload” 
coal and nuclear power. Doing so requires increased 
reliance on variable renewable sources and more dynamic 
control of energy demand, and consequently, more focus on 
short time scales. 
 
Taken together, the components of the next generation 
utility can be thought to interact as seen in the load duration 
curve in Fig. 2 below. Specifically, radical gains in building 
energy efficiency should reduce the entire demand 
significantly. Demand is then met largely through an 
intelligently designed portfolio of variable and “firm” 
renewable resources. Finally, remaining demand is met 
through a combination of distributed generation (combined 
heat & power and combined cooling, heat & power), 
demand response and plug-in hybrid electric vehicles. 

 
Fig. 2: Conceptual load duration curve for a next generation 
utility.  

The design of the next generation utility concept is currently 
under development by Rocky Mountain Institute. This paper 
describes research around new strategies for integration of 
large-scale variable renewable resources. 

3 BACKGROUND 

One of the primary goals of electric utilities is maintaining 
the reliability of the electric system—the implication being 
that the reliability of any individual generator is only 
important in the larger context of system reliability. This 
insight also recognizes that all generators, both conventional 
and variable, have some probability of failure. The forced 
outages of conventional generators result from unplanned 
mechanical failures, whereas the effective “forced outages” 
of variable generators are due to the risk of “fuel” (i.e., wind 
or sun) availability. These two factors lead to the conclusion 
that we must evaluate variable renewable generators for 
their contribution to overall system reliability, rather than 
the reliability of an individual renewable generator. 

Because of the implications for reliability, capacity credit—
the amount of capacity that can be counted on to contribute 
to system reliability—has financial value and can therefore 
greatly improve the cost-effectiveness of wind power. 
Conventional wisdom holds that capacity credit is given to 
an individual site based on the individual site characteristics. 
(Milligan 2002) This philosophy generally leads to the 
assumption that wind farms have little or no capacity value 
because the degree of the resource’s variability is so high at 
each individual site. (Kirby, et al 2002)  
 
Similarly, while solar is more predictable than wind, it is 
still variable and therefore given little credit for contributing 
to system reliability. 
 
However, modern financial portfolio theory offers a 
different way of looking at the world. A financial portfolio 
consists of a combination of individual stocks. Developed 
by Harry Markowitz in 1952, modern portfolio theory 
enables the creation of minimum-variance portfolios for a 
given level of expected return. This theory is based on 
diversification—the lower the correlation between the 
individual assets that make up the portfolio, the lower the 
portfolio variance, or risk. (Alexander 1996) 
 
Portfolio theory can be easily applied to energy resources. 
In this context, a renewable portfolio can comprise a 
geographically dispersed set of wind farms and solar electric 
systems. This paper seeks to analyze the reliability value, 
and therefore capacity value, of such set of wind and solar 
generators dispersed across the U.S.  Midwest. 

4 DATA AND METHODS 

4.1 Data Sources 
This study attempts to maximize the use of high quality 
measured wind speed and solar insolation data. All data 
were recorded at hourly intervals. The wind data was 
measured at or near a 50-80 meter hub height and the solar 
data includes separate direct and diffuse radiation values. 
 
This initial analysis is limited to the Midwest Reliability 
Organization (MRO) for the 2004 calendar year. This region 
and timeframe were selected from among those previously 
analyzed by Hansen & Levine (2008) because they provided 
the highest number of corresponding sites for which 
measured solar data was available. 
 
The wind data was chosen from the RMI/UC-Boulder wind 
database compiled by Levine and Hansen (Levine 2007, 
Hansen & Levine 2008). The original source for the MRO 
data was the University of North Dakota Energy & 
Environmental Research Center (EERC) hosted Plains 



Organization for Wind Energy (POWER) wind database.1 
Thirty-five (35) wind sites from MRO were included in this 
analysis. 
 
All solar data was taken from the National Solar Radiation 
Database (NSRDB) 1991-2005 Update maintained by the 
National Renewable Energy Lab (NREL).2 Though this 
database contains radiation data for 1,454 sites, only 40 of 
these sites include measured data. 
 
For the region and period of interest – MRO in 2004 – three 
solar insolation sites were selected with measured data for 
90% or more of the time. An additional five modeled sites 
were selected to increase the spatial diversity of the dataset. 
These modeled sites were carefully selected to be class-I 
sites with 100% low data uncertainty during 2004. (NREL 
2007) 

4.2 Data Preparation 
Both wind speed and solar insolation data were first cleaned 
to remove any negative, grossly out of range values, or 
flagged as invalid points. These removed points were 
conservatively set to zero. The measurement times were also 
normalized to coordinated universal time (UTC) to ensure 
data alignment across time zones. 
 
For wind, the raw wind speed was converted to a consistent 
80-meter or greater hub height using the methodology 
described in detail in Hansen and Levine (2008). In 
summary, all data gathered at lower than 40m were 
discarded, data gathered between 40m and 80m were scaled 
up to 80m, and all data gathered at or above 80m were left 
at the recorded height. Wind speeds were adjusted for height 
using the one-seventh-power rule. 
 
For solar, both direct (beam) insolation and diffuse 
horizontal collector data was included. Where measured 
solar data was not available on an hour-by-hour or site-by-
site basis, modeled data was substituted when possible. 

4.3 Wind Power Production Model 
As described further in Hansen & Levine (2008), the 2 MW 
Vestas V80 was chosen to model power production. The 
turbine’s power curve was adjusted for elevation and air 
density at each site. 

4.4 Solar Power Production Model 
Solar power production was modeled for an idealized 1-axis 
polar mount tracking photovoltaic system with a maximum 
power point (MPP) tracker. Although solar thermal systems 
                                                             
1 Available on line at: 
www.undeerc.org/programareas/renewableenergy/wind/default.asp 
2 Available on-line at: 
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/ 

are more common for utility scale solar power, a 
photovoltaic system was chosen in this analysis because: 
 
• The NSRDB-Update modeled direct insolation data 

does not adequately capture some frequency 
components important for solar thermal analysis 
(Renné, et al 2008); and 

• Concentrating solar power production, including solar 
thermal is less suited for areas, such as MRO, where 
diffuse radiation comprises a substantial portion of the 
total insolation. 

 
The model system was tilted at an angle above horizontal 
equal to the site latitude. The Maximum Power Point (MPP) 
current was assumed to vary linearly with insolation. 
Temperature effects and decreased MPP voltage at lower 
insolation levels were not included. An isotropic sky is 
assumed and implies equal diffuse radiation intensity in all 
directions. Reflected radiation is conservatively assumed to 
be zero. Other losses, including conversion and inverter 
efficiencies were assumed to be constant. Since the system 
was scaled to a fixed total AC nameplate power it was not 
necessary to quantify these other losses.  The resulting 
equations for insolation and power production are: 
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Where IB=direct (beam) insolation, IDH=horizontal diffuse 
insolation, δ=solar declination, and ζ=zenith angle. (adapted 
from Masters 2004) 
 
Though this model is very simple, it is adequate to capture 
the time variability of the solar resource, which is the 
primary concern in this study. Further efforts are underway 
to refine this model to both include non-idealities and the 
balance of system hardware and to compare other solar 
power system designs including fixed photovoltaics and 
concentrating solar technologies. 

4.5 Scaling and Interconnection 
As described in section 3, this study combined multiple 
individual generation sites to create portfolios of 
geographically and resource (wind vs. solar) diverse 
generation. This analysis does not consider the constraints 
and losses associated with an interconnecting transmission 
system and other infrastructure components. 
 
To facilitate comparisons of results for different scenarios, 
all individual wind and solar site date was scaled to a 
nameplate power rating of 100 MW AC. For solar, this 
scaling was done on the AC power rating at 1-sun (1000 



W/m2). When multiple sites were interconnected to form a 
portfolio, individual site output power was scaled such that 
the total nameplate power for the portfolio was kept at 100 
MW. The selection of 100 MW was arbitrary, and the 
results can be readily scaled up (or down) as needed. The 
use of 100 MW also affords easy conversions to/from 
percent of nameplate load.  

4.6 Variability and Output Metrics 
The variability of site (or portfolio) output was quantified as 
the standard deviation, σ, of the (combined) hourly power 
production in MW. The standard deviation also has units of 
MW. The output was quantified as the arithmetic mean of 
the hourly power production in MW. If desired, this average 
output measure can be converted to annual energy 
production in MWh by multiplying by the number of hours 
in a year. 
 
In addition to representing important considerations for 
integrating a variable resource into a utility load, the choice 
of mean and standard deviation allow for significant 
computational savings when optimizing large portfolios. 
This is because, rather than having to recalculate the hour-
by-hour power output at each optimization step, it is only 
necessary to scale the covariance matrix and mean. 
 
The computation of the portfolio mean,

! 

pp , for n sites is 
straightforward: 
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where ai is the percent share, or weight, of generating 
capacity for an individual site. And 

! 

pi is the mean of the 
hourly output series, Pi, of the corresponding site. 
 
The computation of the portfolio standard deviation, σp, 
takes advantage of the fact that the variance (σ2) of the sum 
of a set of random variables, Xi, is equal to the sum of the 
elements in their covariance matrix. Namely, 
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And the property that the covariance of scaled random 
variables is equal to the scaled covariance of the original 
variables: 
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As a result, the portfolio output power standard deviation is 
given by: 
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or in Matrix form: 
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since Cov(X,X) = Var(X). 

4.7 Optimization Methodology 
The portfolio variability was minimized using Monte Carlo 
methods subject to a constraint on the average output power: 
 

! 

minimize(" p )   subject to 

! 

pp " plimit  

 

This portfolio power constraint, plimit, was varied from the 
minimum to maximum single site output average power, pi, 
for the set of sites in a scenario. 
 
Rather than running a separate optimization for each Plimit, 
in which any runs that did not meet the constraint must be 
thrown out, the results of each Monte Carlo trial were 
binned according to output level. In this way the simulation 
lets us run multiple constrained optimizations 
simultaneously. 
 
Also, to more fully explore the potential value of sparse 
portfolios, at the start of each trial, random weights were 
assigned not to all n sites, but to a randomized subset, N, of 
the available sites. This was necessary since the probability 
of multiple zero or near-zero share members existing in a 
portfolio of randomly weighted sites drops precipitously 
with increasing n. 

4.8 Treatment of Constrained Number of Sites 
During the analysis, it was noticed that the optimal portfolio 
rarely contained all of the sites. Further investigations were 
conducted to determine the impacts of restricting the 
number of sites included in the portfolio. 



 
This introduced an additional constraint to the optimization: 
 

! 

length(N) " nlimit  

 
Separate simulations were run for each value of nlimit. 
 
In these scenarios, the subset of sites with nonzero output 
shares was randomly selected for each trial from the entire 
appropriate set of power data (eg all wind sites). In this way, 
the members of the subset of sites was allowed to vary to 
achieve the optimal results across a spectrum of output 
levels. The sites represented at low output levels for a given 
nlimit would typically be different than those included in a 
higher output portfolio for the same nlimit. 

5 RESULTS AND DISCUSSION 

5.1 Wind alone 
Given the growing body of literature on the subject (Archer 
& Jacobson 2007, for example) and the results of prior 
studies by the group using different optimization methods 
(Hansen & Levine 2008), it was not surprising to find that 
the power production variability for an optimized portfolio 
of wind assets was lower than that for its sites individually.  
 
Specifically, optimized wind portfolios for MRO in 2004 
reduced output variability an average of 45%3 compared to 
the individual sites and increased the capacity factor from 
0.19 to 0.254. The 80/90/95/99% available output level also 
increased from an average of 1.5/0/0/0MW to 9/6/4/1MW5. 

5.2 Solar alone 
Similar to wind, combining solar generating assets into an 
optimal portfolio reduced the output variability compared to 
that of the individual sites. Optimized solar only portfolios 
for MRO in 2004 reduced output variability an average of 
15% compared to the individual sites and increased the 
capacity factor from 0.23 to 0.25. Because the sun sets, the 
power output for individual solar sites is zero half of the 
time. When combined into a portfolio, this increased to 
8 MW of firm output capacity available 50% of the time. 
 
A major factor in this reduced variability comes from the 
range of longitudes included in a portfolio. Increasing 
longitudinal spans makes it possible for the sun to be 

                                                             
3 All portfolio averages include the two middle quartiles of the set 
of optimal portfolios. 
4 CF for portfolio with moderately high output and standard 
deviations (bin 15/20) vs site average. 
5 Increase guaranteed output levels for portfolio with moderately 
high output and standard deviations (bin 15/20.) 

available to some collector in the portfolio for more hours of 
the day. Spatial diversity of solar also reduces the impact of 
patchy clouds covering the sun, since it is likely that the sun 
will be unobscured at one of the other sites. 
 
In this analysis, the reduction was less dramatic than for 
wind, largely because solar radiation is more correlated 
between sites than wind speed. In fact, the minimum of 
covariance matrix for solar only is 50x higher than that for 
wind only.  

5.3 Solar & Wind Together 

 
 

 
Fig. 3: (top)  Load-duration-style output curves for optimal 
portfolios. A high, flat line that is never at zero is best. 
(bottom) Zoom in on the lower right showing significantly 
improved firmness of output. 6 

When combined, solar and wind resources provide optimal 
portfolios which offer further decreases in power variability 
beyond that of either alone.  
 
In this analysis, both the wind only and solar only 
covariance matrices were strictly positive, indicating that 
the resource specific power production was more or less 
correlated. In the combined solar & wind scenario, negative 
elements appear indicating an anti-correlation between the 
solar and wind resources which is a powerful indicator for 
the potential of cross-firming 
 
Optimized portfolios offer an average decrease in variability 
of 55% below the average of individual sites. This 
represents a 13% lower average variability than the optimal 
for wind only and 60% lower than the optimal solar. The 
                                                             
6 The portfolios depicted as optimal in these figures are those with 
moderately high output and standard deviations. (bin 15/20). See 
section 5.4 for further discussion. 



combined optimal capacity factor was 0.25 and the 
80/90/95/99% available output increased to 11/7/4/2 MW. 
 
The top chart in Fig. 3Error! Reference source not found. 
compares the output duration improvements for the optimal 
combined portfolios with those of the individual technology 
portfolios and those of an arbitrary subset of the individual 
sites. The upper plot shows that all of the optimal portfolios 
and the combined wind+solar and the wind-only profiles in 
particular, have a relatively flatter profile, illustrating that a 
narrower range of output levels is produced for a majority of 
the time. The combined portfolio produces the flattest 
profile, illustrating its further variability reductions. The flat 
regions of the curve are also higher than those of the 
individual sites, indicating an increase in reliable output 
power during these periods of reduced variability. 
 
The bottom chart in Fig. 3Error! Reference source not 
found. shows that the optimal combined and wind-only 
portfolios eliminate the amount of time with zero output. 
This represents a significant improvement above the roughly 
15% of the time the wind sites in this analysis have zero 
output. The optimal solar-only portfolio also shows a large 
reduction in zero output from 50% to 40% of the time. 
 
Some of the ways in which the solar and wind resources 
compliment each other are illustrated in Fig. 4. At night, the 
wind generators provide power when the sun can’t. During 
the afternoon of May 27th and all day on May 28th solar 
output is able to compensate for low wind power output to 
produce a lower variability output. 
 

 
Fig. 4: Generation profile of optimal portfolios. 

5.4 Trade-offs 
For each scenario there is a set of optimal portfolios that 
represent a trade-off between variability (standard 
deviation) and power output (

! 

pp ). 
This concept is represented graphically with the efficient 
frontier shown in Fig. 5 This plot shows the trade-off 
between risk (variability) and reward (output). Individual 

sites appear as points, while optimal portfolios lie along a 
curve. Moving toward the left (lower variability) and up 
(higher output) represent desired trajectories. A utility can 
pick from along the curves to select the best-suited balance 
of output and variability. 
 

 
Fig. 5: Tradeoff of output power vs variability. Upper left is 
best. 

In the figure it is clear that in all cases – wind-alone, solar-
alone, combined solar and wind – the optimal portfolios 
offer decreased variability (standard deviation) for a given 
output level and/or increased average power output for a 
given variability compared to their associated individual 
sites alone. This figure also clearly shows the added value of 
cross-firming wind with solar to allow a few percentage 
points of increased output or decreased variability. 

5.5 Effect of Number of Site Constraints 
The study conducted included preliminary analysis on the 
impacts of limiting the number of sites selected from the 
available resources for a portfolio. As seen in Fig. 6, 
including only a few of the available sites can achieve 
enough diversity for the majority of reductions in variability 
(or increases in output). 
 



 
Fig. 6: Improvement in variability for a given output can be 
had with only a few optimally selected sites. 

A marked improvement in variability is achieved by 
interconnecting portfolios as small as two sites and 
portfolios of only six optimal chosen sites are nearly 
indistinguishable from the unconstrained optimization.  

TABLE 1: OPTIMAL PORTFOLIO RESULTS 
(WIND+SOLAR) 

Max Sites 
Constraint 

Avg # Sites in 
Best Portfolios 

Average Drop in 
Std. Dev.7 

2 2.0   9.0 MW 
4 4.0 13.0 
6 5.5 13.4 

12 8.8 13.7 
20 9.8 13.8 

43 (all) 8.18 13.8 
 
Furthermore, the actual sites which make up the average 
optimal portfolios for scenarios with higher numbers of sites 
are typically much lower than nlimit as seen in Table 1. This 
could plausibly be due to the difficulty of finding optimal 
solutions from the extremely large number of combinations 
of sites and weights for high nlimit scenarios. However, 
additional simulations have been observed to further 
decrease the number of sites in the optimal portfolios. 
 
Others, including Archer and Jacobson (2007), have shown 
seemingly contradictorily results that the standard deviation 
of the output tends to decrease monotonically with the 
number of sites interconnected in an array. One possible 
resolution to this conflict is that the number of sites 
available to draw from when creating a portfolio enables the 
reduction in standard deviation even though the optimal 

                                                             
7 Relative to the average std. dev. of individual sites of 25MW 
8 The full portfolio is the result of 5-10x as many simulations as 
the other sites. 

portfolio of those sites may not contain all of the sites. 
Further investigation is required to better understand this 
phenomenon. 

6 SOLAR AND WIND IN A NEXT GENERATION 
UTILITY 

While geographical dispersion of variable resources and the 
combination of different variable resources can significantly 
reduce portfolio variability, as described in this paper, the 
remaining variability must be managed in order to balance 
demand and supply on the hourly, minute, and second 
scales.  
 
This balancing currently happens through the use of 
automated generation control and ancillary services. 
However, with greatly increased penetrations of variable 
renewables, more flexible capacity will be required. Given 
advances in communications and control technologies, 
much of this remaining variability should be able to be met 
effectively through the dynamic use of: 
 
• Responsive Loads—demand response has traditionally 

been used to clip and shift on-peak demand to off-peak 
periods in order to defer building new generation 
capacity. Increasing the magnitude and duration of 
demand response contributes to controlling absolute 
demand growth. Furthermore, developing demand 
response techniques that can operate at more than just 
peak periods should allow demand response to provide 
ancillary grid services and help manage renewable 
variability. Previous pilot projects in California and 
Nevada have shown that automated technologies with 
two-way digital communications can successfully drive 
demand response. 
 

• Energy Storage— powerful system performance 
synergies can be derived from the integration of the 
electric and transportation sectors through the use of 
plug-in hybrid electric vehicles and full electric 
vehicles. For the electric utility, PHEVs and EVs offer 
responsive off-peak load, the potential for dispatchable 
on-peak capacity from vehicle-to-grid (V2G) 
connections, and the prospect of economic electric 
storage, since the high capital costs of batteries would 
be shared by drivers. 

 
• Intelligent Grid Communications—Increase use of 

responsive load and PHEVs requires advanced grid 
communications technologies. Utilities must be able to 
communicate in real-time with loads and PHEVs to 
make most effective use of the firming capabilities of 
those resources. Such capabilities are being explored in 
on-going research into “smart grid” technologies. 



7 CONCLUSIONS 

This study shows that, as is the case for wind, 
interconnecting individual solar generation sites into 
geographically diverse arrays can reduce the variability of 
the power output. It also shows that including solar 
generation sites into arrays of geographically diverse wind 
sites can further reduce the total variability beyond what is 
possible for either resource type alone. Finally, it was 
observed that, at least in the modeled system, only a small 
subset of the potential sites in an interconnected array need 
to be included to achieve these variability reductions. 

8 NEXT STEPS 

To expand and enhance this analysis for incorporation into 
the next generation utility concept, there are several 
additional elements of analysis that will be addressed, 
including: 
 
• Other geographic areas—this analysis covers only the 

Midwest Reliability Organization (MRO). As with the 
wind-only analysis conducted by Hansen & Levine in 
2008, this analysis will be expanded into the Southwest 
Power Pool (SPP) and the Electric Reliability Council 
of Texas (ERCOT). Additionally, both the wind-only 
analysis and the wind and solar analysis will be 
expanded into the Western Electric Coordinating 
Council (WECC). Once these regions have been 
analyzed, the majority of good wind sites within the 
continental United States will have been addressed. 
 

• Longer time periods—this analysis comprises only the 
year 2004. To most accurately capture the variability 
over time of both wind and solar power, hourly data 
over at least three years should be analyzed. This 
expanded analysis will be conducted as possible given 
the availability of hourly data in a consecutive three-
year period. 
 

• Match to load shape—as discussed at the beginning of 
this paper, renewable resource variability is only 
important in the context of system load. Therefore, a 
complete analysis includes the covariance of 
renewables with load over the same time period. This 
type of analysis, frequently referred to as the effective 
load carrying capability (ELCC) of a renewable 
resource, is dependent in part on the ability to acquire 
accurate hourly load data. 

 
• Integration with demand-side resources—finally, the 

next generation utility project will analyze the 
interactions between variable renewable resources and 
demand-side resources, including responsive load and 
PHEVs. The ability of these resources to manage 

renewable variability largely depends on the duration 
and possible rate of change of each resource.  

 
• Economic drivers—the viability of the next generation 

utility concept is dependent on the cost-effectiveness of 
the system and its components. The theory put forward 
in this paper is that the intelligent combination of 
resources can reduce the cost of the portfolio. However, 
this and other economic drivers, including the cost of 
various technologies and of the transmission capacity 
needed to connect them, must be explicitly addressed. 
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